Frobenius Norm Invariant to Orthonormal Transform Proof

We want to proof:

AUF=UAF=AF||AU||_F=||UA||_F = ||A||_F

The definition of Frobenium Norm:

AF=i,jAij2=trace(AA)||A||_F = \sqrt{\sum_{i,j} A_{ij}^2} = \sqrt{trace(A^{\top}A)}

Nice property about trace:

trace(AB)=trace(BA)trace(AB)=trace(BA)

Note:

AUF=trace((AU)AU)=tr(UAAU)=tr(UUAA)=AF\begin{split} ||AU||_F &= \sqrt{trace((AU)^{\top}AU)} \\ &= \sqrt{tr(U^{\top}A^{\top}AU)} \\ &= \sqrt{tr(UU^{\top}A^{\top}A)} \\ &= ||A||_F \end{split}

Same way the other side…