From Jensen Inequality:
f((1−t)x+ty)≤(1−t)f(x)+tf(y)t⋅f(y)≥−(1−t)f(x)+f((1−t)x+ty)t⋅f(y)≥t⋅f(x)−f(x)+f((1−t)x+ty)f(y)≥f(x)+t1[f(x+t(y−x))−f(x)] We can force t(y−x) to be Δx
And therefore
f′(x)(y−x)=t→0limtf(x+t(y−x))−f(x) Therefore
f(y)≥f(x)+f′(x)(y−x)
The other direction:
If FOC holds, then f is convex
We know
f(x)≥f(z)+f′(z)(x−z) f(y)≥f(z)+f′(z)(y−z) Then
θf(x)+(1−θ)f(y)≥f(z)+f′(z)[θx+(1−θ)y−z]=f(z)