p∗=minf0(x)s.t.fi(x)≤0,i=1,…,mhi(x)=0,i=1,…,p d∗=maxg(λ,ν)s.t.λ≥0 Sufficient Condition:
- Convex problems
- f0,fi are convex
x~,λ~,ν~ are points that satisfy
- ∀i∈[1,m],fi(x~)≤0
- ∀i∈[1,p],hi(x~)=0
- ∀i∈[1,m],λ~i≥0
- ∀i∈[1,m],λ~i⋅fi(x~)=0
- ∇f0(x~)+∑λ~i∇fi(x~)+∑ν~i∇hi(x~)=0
Then:
x~,λ~,ν~ are primal and dual optimum
Proof:
Consider L(x,λ~,ν~)=f0(x)+∑λ~ifi(x)+∑ν~ihi(x) ⇒ its a convex function in x
If x~ satisfies FOC, then it must be a minimizer
- KKT implies ∇xL(x,λ~,ν~)∣x=x~=0
- Therefore x~ is a minimizer of L(x,λ~,ν~)
We know
g(λ~,ν~)=xminL(x,λ~,ν~)=xmin[f0(x)+∑λ~ifi(x)+∑ν~ihi(x)]=f0(x~)+∑λ~ifi(x)+∑ν~ihi(x)=f0(x~) So:
- x~, (λ~,ν~) has zero duality gap
- p∗≥g(λ~,ν~)
- p∗=f0(x~)
- d∗=g(λ~,ν~)=f0(x~)