Proof of KKT Conditions (sufficient)

p=minf0(x)s.t.fi(x)0,i=1,,mhi(x)=0,i=1,,pp^* = \min f_0(\vec{x}) \\ \text{s.t.} \\ f_i(\vec{x}) \le 0, i = 1, \dots, m \\ h_i(\vec{x}) = 0, i = 1, \dots, p
d=maxg(λ,ν)s.t.λ0d^* = \max g(\vec{\lambda},\vec{\nu}) \\ \text{s.t.} \\ \vec{\lambda} \ge 0

Sufficient Condition:

x~,λ~,ν~\tilde{x}, \tilde{\lambda}, \tilde{\nu} are points that satisfy

  1. i[1,m],fi(x~)0\forall i \in [1,m], f_i(\tilde{x}) \le 0
  1. i[1,p],hi(x~)=0\forall i \in [1,p], h_i(\tilde{x}) = 0
  1. i[1,m],λ~i0\forall i \in [1,m], \tilde{\lambda}_i \ge 0
  1. i[1,m],λ~ifi(x~)=0\forall i \in [1,m], \tilde{\lambda}_i \cdot f_i(\tilde{x}) = 0
  1. f0(x~)+λ~ifi(x~)+ν~ihi(x~)=0\nabla f_0(\tilde{x}) + \sum \tilde{\lambda}_i \nabla f_i(\tilde{x}) + \sum \tilde{\nu}_i \nabla h_i(\tilde{x}) = 0

Then:

x~,λ~,ν~\tilde{x}, \tilde{\lambda}, \tilde{\nu} are primal and dual optimum

Proof:

Consider L(x,λ~,ν~)=f0(x)+λ~ifi(x)+ν~ihi(x)L(x, \tilde{\lambda}, \tilde{\nu}) = f_0(x) + \sum \tilde{\lambda}_i f_i(x) + \sum \tilde{\nu}_i h_i(x) ⇒ its a convex function in xx

If x~\tilde{x} satisfies FOC, then it must be a minimizer

We know

g(λ~,ν~)=minxL(x,λ~,ν~)=minx[f0(x)+λ~ifi(x)+ν~ihi(x)]=f0(x~)+λ~ifi(x)+ν~ihi(x)=f0(x~)\begin{split} g(\tilde{\lambda}, \tilde{\nu}) &= \min_{x} L(x, \tilde{\lambda}, \tilde{\nu}) \\ &= \min_{x} [f_0(x) + \sum \tilde{\lambda}_if_i(x) + \sum \tilde{\nu}_i h_i(x)] \\ &= f_0(\tilde{x}) + \sum \tilde{\lambda}_i f_i(x) + \sum \tilde{\nu}_i h_i(x) \\ &= f_0(\tilde{x}) \end{split}

So: