Proof of Main’s TheoremOur goal is to prove that dfdx⃗(x⃗∗)=0\frac{df}{d\vec{x}}(\vec{x}^*) = 0dxdf(x∗)=0, for x⃗∗=minf(x⃗)∈S⊆Rn\vec{x}^* = \min f(\vec{x}) \in S \sube \mathbb{R}^nx∗=minf(x)∈S⊆RnSince SSS is an open set, let0<∣∣Δx⃗∣∣<ϵ0 < ||\Delta \vec{x}|| < \epsilon0<∣∣Δx∣∣<ϵsuch that x⃗∗±Δx⃗∈S\vec{x}^* \pm \Delta \vec{x} \in Sx∗±Δx∈SThen using Taylor’s theoremf(x⃗∗+Δx⃗)=f(x⃗∗)+dfdx⃗(x⃗∗)Δx+O(Δx⃗)f(\vec{x}^* + \Delta\vec{x})=f(\vec{x}^*)+\frac{df}{d\vec{x}}(\vec{x}^*) \Delta x+O(\Delta \vec{x})f(x∗+Δx)=f(x∗)+dxdf(x∗)Δx+O(Δx)We know that f(x⃗∗+Δx⃗)≥f(x⃗∗)f(\vec{x}^* + \Delta \vec{x}) \ge f(\vec{x}^*)f(x∗+Δx)≥f(x∗)f(x⃗∗)≤f(x⃗∗)+dfdx⃗(x⃗∗)Δx+O(Δx⃗)0≤dfdx⃗(x⃗∗)Δx⃗+O(Δx⃗)0≤dfdx⃗(x⃗∗)Δx⃗+12d2fdx⃗2(x⃗∗)Δx⃗2+16d3fdx⃗3(x⃗∗)Δx⃗3+⋯divide each side by Δx⃗0≤dfdx⃗(x⃗∗)+12d2fdx⃗2(x⃗∗)Δx⃗+16d3fdx⃗3(x⃗∗)Δx⃗2+⋯as Δx⃗→0,0≤dfdx⃗(x⃗∗)\begin{split} f(\vec{x}^*) &\le f(\vec{x}^*)+\frac{df}{d\vec{x}}(\vec{x}^*) \Delta x+O(\Delta \vec{x}) \\ 0 &\le \frac{df}{d\vec{x}}(\vec{x}^*) \Delta \vec{x} + O(\Delta \vec{x}) \\ 0 &\le \frac{df}{d\vec{x}}(\vec{x}^*) \Delta \vec{x} + \frac{1}{2}\frac{d^2f}{d\vec{x}^2}(\vec{x}^*) \Delta \vec{x}^2+\frac{1}{6}\frac{d^3f}{d\vec{x}^3}(\vec{x}^*) \Delta \vec{x}^3+ \cdots \\ &\text{divide each side by $\Delta \vec{x}$} \\ 0 &\le \frac{df}{d\vec{x}}(\vec{x}^*) + \frac{1}{2}\frac{d^2f}{d\vec{x}^2}(\vec{x}^*) \Delta \vec{x}+\frac{1}{6}\frac{d^3f}{d\vec{x}^3}(\vec{x}^*) \Delta \vec{x}^2+ \cdots \\ &\text{as } \Delta \vec{x} \rightarrow 0, \\ 0 &\le \frac{df}{d\vec{x}}(\vec{x}^*) \end{split}f(x∗)0000≤f(x∗)+dxdf(x∗)Δx+O(Δx)≤dxdf(x∗)Δx+O(Δx)≤dxdf(x∗)Δx+21dx2d2f(x∗)Δx2+61dx3d3f(x∗)Δx3+⋯divide each side by Δx≤dxdf(x∗)+21dx2d2f(x∗)Δx+61dx3d3f(x∗)Δx2+⋯as Δx→0,≤dxdf(x∗)If we use the same proof for f(x⃗∗−Δx⃗)f(\vec{x}^*-\Delta \vec{x})f(x∗−Δx), then0≤−dfdx⃗(x⃗∗)\begin{split} 0 &\le -\frac{df}{d\vec{x}}(\vec{x}^*) \end{split}0≤−dxdf(x∗)