Proof of Minmax Inequality (1)

We want to prove

minxXmaxyYF(x,y)maxyYminxXF(x,y)\min_{x \in X} \max_{y \in Y} F(x,y) \ge \max_{y \in Y} \min_{x \in X} F(x,y)

Consider fixed values x0X,y0Yx_0 \in X, y_0 \in Y

Define

h(y0)=minxXF(x,y0)F(x0,y0)h(y_0) = \min_{x \in X} F(x,y_0) \le F(x_0, y_0)
g(x0)=maxyYF(x0,y)F(x0,y0)g(x_0) = \max_{y \in Y} F(x_0, y) \ge F(x_0, y_0)

Therefore

x0X,y0Y,h(y0)g(x0)\forall x_0 \in X, y_0 \in Y, \\ h(y_0) \le g(x_0)

So

maxy0Yh(y0)minx0Xg(x0)\max_{y_0 \in Y} h(y_0) \le \min_{x_0\in X} g(x_0)