We have
A∈Rm×n Let (λ1,v1),(λ2,v2),…,(λr,vr),(∀i∈[1,r],λi=0) be non-zero eigenvalue-vector pairs of A⊤A (and that λ1≥λ2≥⋯≥λr)
And let (λr+1,vr+1),…,(λn,vn) be eigenvalue-vector pairs of ATA that its eigenvalue is 0.
Define:
V=[v1v2⋯vn] σi=λi ∀i≤r,ui:Avi=σiui Prove:
ui are orthonormal∀i=j,<ui,uj>=0∀i,∣∣ui∣∣2=1 <ui,uj>=ui⊤uj=σi(Avi)⊤σjAvj=σiσj1vi⊤A⊤Avj=σiσj1viλjvj=σiσjσjeigenvectors of a matrix with different eigenvalues0=0 ∣∣ui∣∣22=σi(Avi)⊤σi(Avi)=λi1vi⊤A⊤Avi=λi1vi⊤λivi=∣∣vi∣∣22=1 We will now proceed to define more ui,∀i∈(r,n]
We will use gram-schmidt for computing those extra uis.
Now we construct V that
V=[VR=[v1⋯vr]Vnull=[vr+1⋯vn]] And now (because σiui=Avi):
AVR=⎣⎡σ100⋮00σ20⋮000σ3⋮0⋯⋯⋯⋱⋯000⋮σr⎦⎤[u1u2⋯ur] From the same reasoning
AV=ΣU=UΣ (proof is left as an exercise)
And now we can apply V−1 to the right side of equation
V=UΣV⊤ 🔥
Now think about the unit circle… This is helpful because it helps us know what every single vector is going to transform into
Note:
∀i=j,vi⊤vj=0∀i=j,(Avi)⊤(Avj)=0(proved in the u orthonormal proof)