Proof of g in Lagrangian problem as a lower bound of true objective

We have original problem:

p=minf0(x)s.t.i[1,m],fi(x)0i[1,p],hi(x)=0p^* = \min f_0(\vec{x}) \\ \\ \text{s.t.} \\ \forall i \in [1,m], f_i(\vec{x}) \le 0 \\ \forall i \in [1,p], h_i(\vec{x}) = 0

Define the Lagrangian function:

L(x,λ,ν)=f0(x)+i=1mλifi(x)+i=1pνihi(x)L(\vec{x},\vec{\lambda}, \vec{\nu}) = f_0(\vec{x}) + \sum_{i=1}^m \lambda_i f_i(\vec{x}) + \sum_{i=1}^p \nu_i h_i(\vec{x})

So, the Lagrangian problem:

minxL(x,λ,ν)=g(λ,ν)s.t. λ0\min_{\vec{x}} L(\vec{x},\vec{\lambda},\vec{\nu}) = g(\vec{\lambda},\vec{\nu}) \\ \text{s.t. } \vec{\lambda} \ge 0

We want to prove:

λ0,νg(λ,ν)p\forall \vec{\lambda} \ge 0, \vec{\nu} \rightarrow g(\vec{\lambda},\vec{\nu}) \le p^*

Consider x~\vec{\tilde{x}} feasible for the primal

fi(x~)0,hi(x~)=0f_i(\vec{\tilde{x}}) \le 0, h_i(\vec{\tilde{x}}) = 0

So

L(x~,λ,ν)=f0(x~)+λifi(x~)undefined0+νihi(x~)undefined=0f0(x~)L(\vec{\tilde{x}}, \vec{\lambda}, \vec{\nu}) = f_0(\vec{\tilde{x}}) + \underbrace{\sum \lambda_i f_i(\vec{\tilde{x}})}_{\le 0} + \underbrace{\sum \nu_i h_i(\vec{\tilde{x}})}_{=0} \le f_0(\vec{\tilde{x}})

Since g(λ,ν)=minx~L(x~,λ,ν)g(\vec{\lambda}, \vec{\nu}) = \min_{\vec{\tilde{x}}} L(\vec{\tilde{x}}, \vec{\lambda}, \vec{\nu}),

x,g(λ,ν)f0(x)g(λ,ν)p\forall \vec{x}, g(\vec{\lambda}, \vec{\nu}) \le f_0(\vec{x}) \rightarrow g(\vec{\lambda}, \vec{\nu}) \le p^*