We have original problem:
p∗=minf0(x)s.t.∀i∈[1,m],fi(x)≤0∀i∈[1,p],hi(x)=0 Define the Lagrangian function:
L(x,λ,ν)=f0(x)+i=1∑mλifi(x)+i=1∑pνihi(x) So, the Lagrangian problem:
xminL(x,λ,ν)=g(λ,ν)s.t. λ≥0 We want to prove:
∀λ≥0,ν→g(λ,ν)≤p∗ Consider x~ feasible for the primal
fi(x~)≤0,hi(x~)=0 So
L(x~,λ,ν)=f0(x~)+≤0∑λifi(x~)+=0∑νihi(x~)≤f0(x~) Since g(λ,ν)=minx~L(x~,λ,ν),
∀x,g(λ,ν)≤f0(x)→g(λ,ν)≤p∗