Lemma 1 Let ( λ , u ⃗ ) (\lambda, \vec{u}) ( λ , u )  A ∈ S n A \in S^{n} A ∈ S n  
∃ U , U  is orthornormal : U ⊤ A U = [ λ 0 … 0 0 ⋮ 0 [ B ] ] and  B ∈ S n − 1 \exist U, U \text{ is orthornormal}: \\
U^{\top} A U = \begin{bmatrix}
\lambda & \begin{matrix} 0 & \dots & 0 \end{matrix} \\
\begin{matrix} 0 \\ \vdots \\ 0 \end{matrix}  &
  \begin{bmatrix}B\end{bmatrix}
\end{bmatrix} \\
\text{and } B \in S^{n-1} ∃ U , U  is orthornormal : U ⊤ A U = ⎣ ⎡  λ 0 ⋮ 0   0  …  0  [ B  ]  ⎦ ⎤  and  B ∈ S n − 1 Intuition for this lemma: We want to prove the multiplicity equality property by induction, each time we can just count the multiplicity for the current λ \lambda λ  λ \lambda λ  A A A  B B B   
Proof of Lemma 1 :
We will construct U U U  
U = [ u ⃗ [ U 1 ] ] U = \begin{bmatrix}
\vec{u} &\begin{bmatrix} 
U_1 
\end{bmatrix}
\end{bmatrix} U = [ u  [ U 1   ]  ] Seems like we can use gram-schmidt to construct U 1 U_1 U 1   
Consider the multiplication of U ⊤ A U U^{\top} A U U ⊤ A U  
U ⊤ A U = [ u ⃗ ⊤ [ U 1 ⊤ ] ] [ A ] [ u ⃗ [ U 1 ] ] = [ u ⃗ ⊤ [ U 1 ⊤ ] ] [ A u ⃗ A U 1 ] = [ u ⃗ ⊤ [ U 1 ⊤ ] ] [ λ u ⃗ A U 1 ] = [ λ u ⃗ ⊤ u ⃗ u ⃗ ⊤ A U 1 U 1 ⊤ λ u ⃗ [ B = U 1 ⊤ A U 1 ] ] = [ λ 0 ⋯ 0 0 ⃗ [ B = U 1 ⊤ A U 1 ] ] \begin{split}
U^{\top}AU &= \begin{bmatrix}
\vec{u}^{\top} \\ \begin{bmatrix} U_1^{\top} \end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
A
\end{bmatrix}
\begin{bmatrix}
\vec{u} &\begin{bmatrix} U_1 \end{bmatrix}
\end{bmatrix} \\
&= \begin{bmatrix}
\vec{u}^{\top} \\ \begin{bmatrix} U_1^{\top} \end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
A\vec{u} &AU_1
\end{bmatrix} \\
&= \begin{bmatrix}
\vec{u}^{\top} \\ \begin{bmatrix} U_1^{\top} \end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
\lambda\vec{u} &AU_1
\end{bmatrix} \\
&= \begin{bmatrix}
\lambda \vec{u}^{\top}\vec{u} &\vec{u}^{\top}AU_1 \\
U_1^{\top} \lambda \vec{u} &\begin{bmatrix} B = U_1^{\top} AU_1 \end{bmatrix}
\end{bmatrix} \\
&= \begin{bmatrix}
\lambda &\begin{matrix}0 & \cdots & 0 \end{matrix} \\
\vec{0} &\begin{bmatrix} B = U_1^{\top} AU_1 \end{bmatrix}
\end{bmatrix}
\end{split} U ⊤ A U  = [ u ⊤ [ U 1 ⊤   ]  ] [ A  ] [ u  [ U 1   ]  ] = [ u ⊤ [ U 1 ⊤   ]  ] [ A u  A U 1   ] = [ u ⊤ [ U 1 ⊤   ]  ] [ λ u  A U 1   ] = [ λ u ⊤ u U 1 ⊤  λ u  u ⊤ A U 1  [ B = U 1 ⊤  A U 1   ]  ] = [ λ 0  0  ⋯  0  [ B = U 1 ⊤  A U 1   ]  ]  u ⃗ ⊤ A U 1 = u ⃗ ⊤ A ⊤ undefined Because  A  is symmetric U 1 = ( A u ⃗ ) ⊤ U 1 = λ u ⃗ ⊤ U 1 = 0 ⃗ ⊤ \vec{u}^{\top}AU_1 = \vec{u}^{\top}\underbrace{A^{\top}}_{\mathclap{\text{Because $A$ is symmetric}}}U_1 = (A\vec{u})^{\top}U_1 = \lambda \vec{u}^{\top}U_1=\vec{0}^{\top} u ⊤ A U 1  = u ⊤ Because  A  is symmetric A ⊤   U 1  = ( A u ) ⊤ U 1  = λ u ⊤ U 1  = 0 ⊤  Proof of the multiplicity equality property Since we proved in Lemma 1 that B ∈ S n − 1 B \in S^{n-1} B ∈ S n − 1  
B = V ⊤ Λ V B = V^{\top}\Lambda V B = V ⊤ Λ V We know also:
U ⊤ A U = [ λ ⋯ 0 0 ⋮ 0 B ] U^{\top}AU = \begin{bmatrix}
\lambda &\begin{matrix}\cdots &0 \end{matrix} \\
\begin{matrix} 0 \\ \vdots \\ 0 \end{matrix} &B 
\end{bmatrix} U ⊤ A U = ⎣ ⎡  λ 0 ⋮ 0   ⋯  0  B  ⎦ ⎤  Therefore
V U ⊤ A U V ⊤ = [ λ ⋯ 0 0 ⋮ 0 [ V B V ⊤ = Λ ] ] VU^{\top}AUV^{\top} = \begin{bmatrix}
\lambda &\begin{matrix}\cdots &0 \end{matrix} \\
\begin{matrix} 0 \\ \vdots \\ 0 \end{matrix} &\begin{bmatrix} VBV^{\top} = \Lambda \end{bmatrix} 
\end{bmatrix} V U ⊤ A U V ⊤ = ⎣ ⎡  λ 0 ⋮ 0   ⋯  0  [ V B V ⊤ = Λ  ]  ⎦ ⎤